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Executive Summary

The SafeMTS (Safe Maritime Transportation System) program, sponsored by the U.S.
Department of Transportation’s Maritime Administration (MARAD) and operated in collaboration
with the Bureau of Transportation Statistics (BTS) and the maritime industry, enables the
commercial maritime industry to voluntarily and confidentially share near-miss safety information
to identify early warnings, develop preventive measures, and reduce the risk of serious
incidents. The confidentiality of data collected by SafeMTS is protected by BTS under the
Confidential Information Protection and Statistical Efficiency Act (CIPSEA, 44 U.S.C.
3561-3583). BTS collects and analyzes SafeMTS maritime safety data and shares results in
published reports, like this one.

The 2023 program pilot validated the promise of SafeMTS, demonstrating the program’s
capacity to collect valuable data while maintaining the confidentiality protections promised to
industry participants. The pilot report also identified areas for further research and development,
including exploration of ways to improve the efficiency of analysis, both to enable companies to
operationalize safety learnings faster, and to facilitate growth and scalability of the program.

In 2024, SafeMTS began testing advanced data-science methods, including secure,
CIPSEA-protected applications of large language models (LLMs), to increase analysis speed
and accuracy without adding reporting burden and to help scale the program. These
technologies are seen as tools to amplify human expertise, shifting safety practice from reactive
to more predictive, adaptive, and continuously learning systems. This report documents the
methods, models, results, accomplishments, and remaining gaps to guide future improvements
to SafeMTS.

The primary objective of the project was to determine whether Al-enabled analysis would be
effective in combining and analyzing raw data on near-miss events submitted by companies
participating in SafeMTS. To accomplish this, the project team trained and applied LLMs with
the expertise of maritime subject matter experts to extract SafeMTS field values with high
potential learning value, such as causal factors. Overall, the model significantly reduced the
time spent reviewing and extracting information from the maritime near-miss reports, with high
accuracy. Applying the model to extract discrete causal factors, for example, resulted in at least
one causal factor identified for nearly all of the more than 19,000 events in the study dataset, a
substantial increase from about 2% of events with discrete causal factors identified from SME
review alone. The model was also applied to further evaluate key risk areas such as high
potential consequence events.

The report includes potential next steps informed by this effort for improving data quality,
accelerating timely insights, and fostering ongoing industry engagement to support SafeMTS’
growth and effectiveness. These include continued development of advanced analytical
capabilities and enhanced collaboration with maritime industry stakeholders to shape further
research.
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1. Introduction

The SafeMTS (Safe Maritime Transportation System) program enables the commercial maritime
industry to voluntarily and confidentially share near-miss safety information to identify early
warnings, develop preventive measures, and reduce the risk of serious incidents. The program
aims to fill an industry-identified gap in sharing of information on maritime precursor safety
events by securely collecting, analyzing, and sharing learnings from near-miss events across
the industry.

SafeMTS is a collaboration between the U.S. Department of Transportation’s (DOT) Maritime
Administration (MARAD) and Bureau of Transportation Statistics (BTS), in partnership with the
maritime industry. MARAD is the sponsoring agency, and BTS collects and protects submitted
data under the legal authority of the Confidential Information Protection and Statistical Efficiency
Act (CIPSEA). BTS also analyzes the data and shares results in published reports, including ad
hoc reports like this one.

In 2023, SafeMTS conducted a pilot phase, which demonstrated the program’s capacity to
collect valuable data while maintaining the confidentiality protections promised to industry
participants. This effort helped define core program elements and effectively implemented core
functions. The published pilot report included a data key, initial findings, and the process for
adding new company participants. As detailed in the pilot report, the pilot phase also identified
challenges to full implementation of the program, including the resource-intensive nature of
analyzing this type of information to develop safety insights, identify risks, and allow companies
to benchmark their safety performance in a timely way.

In 2024, SafeMTS began an effort to test the feasibility of using more advanced data science
techniques—emerging artificial intelligence (Al) methods and large language models (LLMs)—
within secure, CIPSEA-protected environments, to address these challenges and improve the
efficiency and accuracy of SafeMTS data collection and analysis. This effort is an important step
toward increasing value to stakeholders and data providers while not increasing the burden on
them to collect and share this data, and toward scaling the program to more participants within
the maritime industry.

The rapid evolution of Al technologies—particularly the rise of large language models,
autonomous agents, and agentic workflows—is transforming how organizations ensure safety
and reliability. These advanced systems can continuously analyze data, detect emerging risks,
and suggest or possibly initiate corrective or preventive actions, creating a self-reinforcing cycle
of learning and improvement. Organizations can move from reactive to predictive and adaptive
safety management. Rather than replacing human expertise, these technologies amplify human
awareness, decision-making, and foresight, setting the foundation for a new era of intelligent,
resilient, and continuously learning safety systems. This report describes this work, including the
methodology and Al models applied, the results and key achievements, and gaps and
improvements for future work and full program implementation.
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2. Analysis Method, Evaluation, and Results

The SafeMTS pilot highlighted the need for methods that allow for faster, more efficient
processing and analysis of disparate maritime near-miss data. Examples of challenges
identified in the pilot include inconsistent data definitions and formats across companies, which
made it difficult to aggregate and compare information. Many records lacked completeness, with
missing discrete data on causal factors, preventive actions, and root causes—key elements
needed for meaningful safety learning.

As a result, the SafeMTS team explored the application of currently available Al/LLM tools.
Detailed below is the methodology used in applying these tools to the current SafeMTS data
submissions, as well as technical details, sample data analysis, and a discussion of significant
results and limitations. This Al/LLM approach supports more efficient, valuable safety results
that can reach the maritime industry faster.

2.1. METHODOLOGY

The primary objective of the project was to determine whether LLMs would be effective in
combining and analyzing raw text data submitted by companies participating in SafeMTS. To
accomplish this, the project team defined the following major steps:

e preparing a clean, useable data set, which included integrating data from multiple
companies and identifying and removing duplicative data;
extracting data from text fields to populate missing information; and

e training an AlI/LLM using the expertise of maritime subject matter experts (SMEs), by
testing various prompt engineering techniques on target fields

The most resource-intensive step in this process was determining if the LLMs could accurately
predict structured SafeMTS field values based on free-text narratives and descriptions. For
example, this task involved extracting fields such as “Causal/Contributing Factors” and
“System/Equipment Involved” from narrative incident reports. The team treated this element as
a multi-class classification problem, where the goal was to assign the correct category labels to
predefined fields based on the unstructured input.

Traditional classification models typically require large, labeled training datasets to achieve high
accuracy. These labels are often generated through manual annotation processes, which can be
time-consuming and costly. In contrast, recent advancements in natural language processing
(NLP), particularly with the emergence of LLMs, offer promising alternatives. LLMs have
demonstrated strong performance in zero-shot learning, where the model performs classification
without task-specific training, as well as in few-shot learning scenarios, where limited examples
are provided within the prompt. Details of these various methods used on SafeMTS data are
covered further in section 2.1.4, Extracting SafeMTS Field Values Using Al Models.

2.1.1. Data Integration and Standardization

The foundational work toward developing an Al-enabled model to analyze SafeMTS data began
with consolidating the structurally diverse datasets submitted from participants into a unified
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analytical framework. The team developed a centralized data lake' to integrate these disparate
sources, each of which presented considerable structural variability, with individual files
containing anywhere from 16 to 55 fields. While some sources included fewer fields, offering
more streamlined data, others presented significantly higher field counts, many of which
contained redundant elements, though often with richer data.

To address inconsistencies in field naming conventions across the contributing datasets, a
semantic translation framework—internally referred to as the “Rosetta Stone” framework—was
developed. This framework applied content-based alignment techniques, as exact field name
matches were generally unavailable across sources. For example, the team standardized
critical descriptive fields across multiple naming variations such as “description,” “incident
description,” “event description,” “summary description,” “near-miss description,” and “details.”
This content-driven mapping approach allowed for effective unification of key data elements

regardless of the originating structural and terminology differences.

During the integration process, the team assembled datasets with both simple and more
complex structures. The translation framework proved highly adaptable at both ends of this
spectrum, facilitating scalable and repeatable integration processes for future data contributions.
Throughout this process, data integrity was strictly maintained through robust validation
procedures, ensuring the fidelity of the consolidated information.

Despite the high level of variation across the submissions, the team successfully created a final
integrated data set comprising 103 distinct fields, and including 19,161 individual records,
covering 8 companies and a date range of January 1, 2020, through December 31, 2024. This
unified data lake was a foundational platform for advanced Al analytics, enabling standardized
performance tracking, cross-functional insights, and the development of scalable reporting
mechanisms. Overall, the initiative established a robust technical and methodological foundation
for enterprise-wide data standardization, significantly improving the consistency, reliability, and
usability of organizational data assets.

2.1.2. Data Quality Assurance and Deduplication

As part of the broader data integration effort, the team implemented a dedicated data quality
assurance and deduplication process to ensure the accuracy and reliability of the consolidated
dataset. Due to the wide variety of systems and processes that companies use to collect data,
duplicate near-miss reports could result from such situations as capturing the same incident
report across several involved vessels, a lack of unique identifier on individual records, or
documenting corrective and other follow-up actions separately from original reports. A structured
methodology was established to identify and appropriately handle duplicate records without
compromising legitimate data.

The initial phase of duplicate detection employed Excel-based exact text matching focused on
the incident description fields. This allowed for a preliminary identification of potential duplicates
across sources. However, due to common documentation practices such as copy-paste entry—
particularly in standardized reporting formats—the team used a manual evaluation process to

' A data lake is a repository (often centralized) that stores large volumes of data in their native, raw, or
minimally processed form, allowing for multiple data types (structured, semi-structured, unstructured) and
deferred transformation (i.e., “schema-on-read” rather than “schema-on-write”).
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supplement automated detection. This step was crucial in distinguishing between true
duplicates and distinct incidents that happened to share similar phrasing or language.

To confirm a record as a duplicate, three key fields were required to be identical: vessel
identifier, date/time, and incident description. Only records meeting all three criteria were
separated from the main dataset. Records that contained matching descriptions but differed in
vessel or time of occurrence were retained, recognizing them as separate, valid events. This
conservative approach ensured that valuable incident data was not mistakenly discarded,
thereby preserving analytical completeness. By maintaining both rigor and nuance in record
evaluation, the initiative ensured that the final dataset remained clean, contextually rich, and fit
for reliable analysis and future decision-making.

In addition to removing duplicate records, three core data issues were identified which
complicated the mapping process. Clarifying their nature and remediation tactics was necessary
to improve overall data utility:

e Correct values placed in incorrect fields — Some records contained valid values but
were placed in the wrong fields. These could be corrected or converted relatively easily.

¢ Invalid values in incorrect fields — Certain records contained both invalid values and
incorrect field placement, requiring more complex reassignment and mapping.

¢ Incorrect or irrelevant entries — Some data points were meaningless (e.g., blank
spaces or noise) and needed to be removed.

This algorithmic triage successfully addressed the complexity of heterogeneous real-world data
by automating cleaning, reassignment, and mapping, thereby ensuring a reliable foundation for
analysis.

2.1.3. Creation of an Annotated Testing Dataset

To evaluate the performance of the models used in extracting structured information from
unstructured incident reports, a manually annotated testing dataset was created. A total of 200
records were randomly selected from the aggregated SafeMTS data lake. Each record was then
randomly assigned to SMEs for independent labeling. The SMEs were provided with the
unstructured near-miss event descriptions and were tasked with selecting appropriate values for
a list of prioritized SafeMTS fields. These selections came from standardized dropdown menus,
ensuring consistency across annotations. Importantly, while the SMEs did have access to
additional structured metadata, they were asked to focus on the interpretation of the narrative
descriptions. The narrative descriptions constitute the richest and most consistent field of data
across stakeholders within the SafeMTS program. The resulting SME-labeled dataset served as
a “ground truth” reference set for evaluating the accuracy and reliability of the Al-based field
extraction methods.

2.1.4. Extracting SafeMTS Field Values Using Al Models

As noted toward the start of the Methodology section above, LLMs offer promising alternatives
to using labeled training datasets and show a strong performance in zero-shot, meta prompted,
and few-shot learning, achieving accurate classification without extensive task-specific training.
These prompt engineering techniques were tested across various leading LLMs, to evaluate
their performance on extracting structured SafeMTS field values from unstructured near-miss
reports. These models were tested without prior fine-tuning, relying instead on the prompt
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engineering techniques to guide their responses. Table 1 provides a summary of the
comparative results of different models across target fields. Models were run exclusively in BTS’
protected CIPSEA environment.

Table 1. Tracking Performance

Error At Least
LLM Input Data Context Task Rate One Match
Llama 3.2 Narrative None given Causal Factors 10%-25% | 46%-53%
Llama 3.2 Narrative Descriptions Causal Factors 10%-20% | 50%-58%
Llama 3.2 Narrative Descriptions Grouped Causal Factors 10%-25% | 50%-58%
Llama 3.2 Narrative Descriptions+ Few Grouped Causal Factors 10%-25% | 56%-63%
shot examples
Maverick Narrative Task Description Grouped Causal Factors 0% 69%-79%
Maverick Narrative Few shot examples Grouped Causal Factors, 0% 78%-92%
Selected High Potential Near-
Misses
Maverick Narrative + Few shot examples Grouped Causal Factors, 0% 83%-94%
Short Selected High Potential Near-
Descriptions + Misses
Titles

SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics, SafeMTS.
2.1.4.1. Prompt Design

The performance of LLMs in classification tasks is highly dependent on the structure and
content of the input prompt. The initial approach employed zero-shot classification, in which the
LLM was prompted to extract the target SafeMTS field without being provided with any labeled
examples. In this setting, the model was given only the event description and the name of the
field to be extracted, relying solely on its pre-trained knowledge to infer the appropriate label.

To enhance performance, the team introduced a meta-prompting strategy, which involved
augmenting the prompt with task descriptions and synthetically generated examples for each
valid value in the target SafeMTS fields. These descriptions and examples were constructed
with the assistance of a more advanced LLM, enabling the creation of structured guidance to
improve the model’s interpretability of the classification task. By clearly defining the semantic
boundaries of each label, the meta-prompt helped the model produce more accurate and
consistent outputs.

Subsequently, few-shot classification was tested by incorporating labeled examples from the
SME-annotated dataset directly into the prompt. These examples consisted of actual near-miss
descriptions paired with their corresponding human-extracted SafeMTS field values. This
approach provided the LLM with contextual references, allowing it to generalize better across
similar inputs and improving field extraction accuracy in complex or ambiguous cases.

Together, these prompt engineering strategies enabled a systematic evaluation of the
effectiveness of the different learning settings (zero-shot, meta-prompted, and few-shots) and in
guiding LLMs to extract structured data from the narratives of near-miss reports.

Table 2 provides more details on how the tested prompts evolved when the task given was to
extract causal factors from narrative fields, also discussed further in section 2.1.4.2.
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Table 2. Breakdown of Various Prompts Tested

g;?\rtl;ﬁtt Prompt Description and Content Result
Acceptable The initial prompt contained a list of acceptable values | When this prompt structure is used
Values the model could pull from the event description for a with Llama 3.2 to predict the 132 SME
target field (such as causal factors) without further labeled records in the initial phase of
input. An example prompt for extracting the values for | the project, in 46-53% of the records
the Causal/Contributing Factors field: the model had at least one matching
prediction.
“Extract the Causal/Contributing Factors from the
near-miss description. Acceptable values for
causal/contributing factors are: 1) Act of Violence, 2)
Carelessness, 3) Complacency/Laziness
Near-miss event description: On ATB, the
activation/reset switch for the watertight door system
on the bridge was accidentally bumped into the closed
position while a chair was being moved, causing the
three watertight sliding doors in the engineering
spaces to auto-close. ...”
Acceptable The prompt was next revised to include brief Depending which analysis is
Value descriptions of the SafeMTS acceptable values with performed, there was a 0-10% boost in

Descriptions

made up examples:

Equipment/Material Failure Description: Malfunction or
failure of any equipment, machinery, tools, or vessel
components.

Example: The bilge alarm failed to activate during
flooding, despite being tested days prior.

performance. The most significant
impact was on causal factors.

Grouped Next, grouping acceptable values was tested to limit Depending which analysis is
Acceptable the model’s confusion. For example, the set of four performed, there was a 0-15% boost in
Values acceptable values “Carelessness”, performance.
“Complacency/Laziness”, “Distraction”, and “Fatigue”
were grouped as single value: “Mental Lapse”. This
reduced the number of acceptable values for
causal/contributing factors from 23 to 11.
Few-Shot Next, few-shot learning was tested. Selected records There were significant performance
Examples from the dataset were provided as input to the model improvements for all models. When
with their corresponding SME selected values. Llama 3.2 was provided with 1, 2, and
8 randomly selected examples for
Example prompt: “Below provided are near-miss extracting grouped causal/contributing
descriptions and the corresponding factors, the model obtained at least
causal/contributing factors. Use these when forming one matching prediction for 48%, 58%
the answer. and 69% of records, respectively.
Near-miss Event Description: “Aboard the MV during When larger models were tested,
general vessel operations, the auxiliary system was including Maverick (which has more
believed to have a battery issue so the Second Mate than x100 the parameters of Llama
secured the power at the breaker panel to work on the | 3.2), there were significant
issue. ... performance gains. For example, the
Maverick model obtained at least one
Corresponding causal/contributing factors: matching causal/contributing factor
Equipment/Material Failure” prediction for 88% of records.
Chain-of- The model was directed to provide step-by-step Improved performance on a case-by-
Thought reasoning explaining its choices. case basis. Functional prompt
Prompt structure was not tested

independently.
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Prompt

Prompt Description and Content

Content
Additional Often, companies provide additional unstructured Improved performance on a case-by-
Unstructured input that provides useful information such as the case basis. It was not tracked
Text fields “Short Description” and “Title”. We adjusted the independently.

prompt and provided these two fields in addition to the
near-miss description.

SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics, SafeMTS.
2.1.4.2. Causal Factor Extraction Using Prompts

For initial testing, it was necessary to prioritize the data to be extracted, and it was determined
that “causal factors” was a critical field that would provide the most value back to stakeholders.
As described above, the team developed and tested several prompts to assess their ability to
extract causal factors and initial results achieved only modest accuracy (approximately 20—
30%). After review with SMEs, the prompts were refined to include descriptive details such as
personnel roles, definitions, and examples, which improved performance to approximately 60%.
The next phase introduced curated and random examples to further guide the model. Through
iterative testing with different numbers and types of examples, performance advanced
significantly, ultimately reaching accuracy levels in the high 80% range for causal factor
extraction. One of the sample near-miss event descriptions from the SafeMTS guidance was
used as input for testing the extraction of causal factors, as shown in Table 3:

Table 3. Extraction of Causal Factors

SafeMTS Sample Near-Miss Event Description Extracted Causal Factors

On ATB, the activation/reset switch for

into the closed position
while a chair was being moved, causing the three watertight sliding — Carelessness
doors in the engineering spaces to auto-close. The local alarm and
20 second delay notified personnel in that space of a closing. Two
electrical extension cords being run through two of the
watertight doors were severed.

Persons on the bridge were unaware until notified by personnel | Bridge personnel were unaware because

in affected spaces due to there being no alarm on the bridge no alarm existed on the bridge panel
panel. The only indication was the small light at each door symbol — Poor/Insufficient Communications
on the panel. Upon realization of the closure, personnel were and Poor/Bad Design

notified of the unintended closing of the watertight doors. The
activation switch was reset on the bridge and the watertight doors
were electrically opened at the local operation switch.

The previous day welding leads had been run through the doors and
could have caused a worse incident. A temporary cover was
immediately placed over the spring-loaded activation switch as an
added security measure to prevent accidental operation by being
bumped or brushed up against. A more permanent cover will be
fabricated. | recommend we add a new procedure to lock-out the
watertight doors from being operated remotely whenever cables are
routed temporarily through these doors. All cables should always | Temporary routing of cables through

be removed whenever work is not being carried out." watertight doors without safeguards

— Poor Planning and Failure to Follow
Procedure

SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics, SafeMTS.
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2.2. TECHNICAL PROCESSES AND MODEL EVALUATION

Integrating LLMs into the data ingestion and analysis workflow required key modifications,
including the development of a centralized data lake and the reassessment of data quality
procedures. Further technical details of the extract-transform-load (ETL) process, and how
outputs of the LLM were evaluated for accuracy are discussed in this section.

2.2.1. ETL/Data Lake

The ETL process was constructed to ensure that incoming datasets from multiple companies
could be standardized, validated, and integrated into the data lake for analysis in the most
efficient, automated manner possible, while still maintaining strict data integrity and protections.
The steps below detail further how the data was stored and integrated.

o Extract: New data files are received and stored in their original format. Each file is
checked against a “Rosetta Stone” mapping to verify consistency of structure and
column names. If the structure matches existing records, the file is moved to the next
step of processing. If the structure has any variation and does not match previously
submitted files, a new mapping entry is created in the Rosetta Stone mapping before
processing.

¢ Transform: Using the Rosetta Stone mapping, the dataset columns are aligned and
standardized. The process ensures that all fields follow the agreed naming conventions
and that no additional or missing columns cause discrepancies. Supporting files are
updated to capture metadata and maintain traceability.

¢ Load: Once validated and standardized, the data is appended to the data lake.
Duplicates are also identified and reviewed during this step, and version control is
maintained through incremented file versions. The data lake is reviewed to confirm that
record counts align with expectations and that no duplicates or structural inconsistencies
remain.

2.2.2. Accuracy and Evaluation Metrics (LLM Metrics)

Several measures are used to test how often the Al models identify the correct categories from
near-miss events and how reliable those predictions are. The metrics below are used to
evaluate the performance. These are provided for the general setting where fields can have
multiple correct values (e.g., causal factors).

e Accuracy: Calculates the percentage of model-produced values that match the values
provided by the SMEs. For example, out of all the available answers the Al could have
given for causal factors, this is the percent that the model determined correctly when
compared to SME determined values. For some fields, the number of correct values is
only one (e.g., actual severity level), and for other fields, multiple values could be correct
(e.g., causal factors). To be 100% accurate, the model must match the exact number of
values as well as the specific values themselves. For fields that only permit one value
and have no missing data, this will be the same as Precision and At Least One Match
(discussed below).

e Precision: Precision tallies the total number of values that matched with SME-selected
values. Precision is not affected by how many values the SME provided, only whether a
value produced by the model is a match or not.
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o At Least One Match: Calculates the number of records where the model produced at
least one value matching a SME-determined value for that record. If the model predicted
one correct value for every record, this measure would have a value of 100%. This is a
more forgiving measure used when a record might have several correct answers by
simply checking if the model obtained at least one correct value for that record.

In summary, accuracy gives the overall success rate, precision shows how trustworthy the Al’'s
answers are, and at least one match shows whether the Al was at least partly on the right track
for each case.

2.3. DATA ANALYSIS AND RESULTS

2.3.1. Value Extraction and Population

For this analysis, eight companies’ data were analyzed, which included 19,161 near-miss and
hazard recognition events that occurred between January 1, 2020, and December 31, 2024.
Table 4 and Table 5 show an example of the progression from each company’s raw data
submissions and manual SME processing (which occurred during the SafeMTS pilot phase), to
advanced Al-driven standardization, for a select set of fields. The evolution demonstrates how
SafeMTS moved from fragmented original data toward a more unified dataset capable of
supporting broader analysis and correlation studies. It is important to keep in mind that the
resulting dataset is still incomplete, but the process undertaken, particularly in regards time-
savings, represents the capability of using LLMs to significantly move disparate data towards
timely, useful safety learnings.

Table 4 reflects the initial SafeMTS pilot raw data submission completeness, including values
extracted by rudimentary scripts and SME manual reviews. Cells in green represent instances
where SMEs populated data through manual review during the SafeMTS pilot, up to the number
shown in the cell.?2 Non-green cells show the number of values present in original data files.
While many fields shown can have multiple values assigned per record/event, only the total
number of records that were able to be populated with at least one value in the applicable field
is shown in the “Total Values Submitted or Extracted” column.

Importantly, the number in each cell does not reflect the accuracy of the values; to realize
maximum learning value, many values would require further standardization (corrected, moved
to another field, etc.) beyond what was originally provided or populated by a SME. This does not
necessarily mean that original company values or SME inputs were incorrect, but rather reflects
the potential for improvement to categorization, preciseness, and consistency during LLM
processing. For example, in Table 4, “Task Performed” is an original company field that
contained critical data, though the field name itself did not align with the SafeMTS established
data dictionary fields. Values from Task Performed were extracted by the LLM to populate other
fields, such as “Operations/Activity Ongoing,” “Near-Miss Classification,” and “Causal Factors,”
that more accurately reflected the original values. However, not all data contained in Task
Performed was harnessed to potentially fill gaps in other data fields. Using a field such as Task
Performed again to attempt to populate other fields, such as “System/Equipment Involved” is
planned for the next phase of the program.

2 The number does not represent how many values were originally present or populated specifically by a
SME, but rather the total.
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Table 4. Dataset Completeness by Company — Pilot Phase

Total Values | Percent of

Data Field C1 Cc2 C3 C4 cs C6 Cc7 C8 | Submittedor | 19,161

Extracted Events

Vessel Type 11254 5 189 316 576 10 10 12360 64.5%
Near Miss Classification 10729 4491 40 455 316 51 10 10 16102 84.0%
Location on Vessel (High Level) 9106 1859 87 452 316 29 9 10 11868 61.9%
Location on Vessel (Detailed Lvl) 1412 0 53 1465 7.6%
(Operations| Activity Ongoing 1 189 316 54 10 10 580 3.0%
Task Performed 8958 1494 39 448 10939 57.1%
System| Equipment Involved 6989 37 187 316 53 2 9 7593 39.6%
(Observing Personnel Type 38 188 314 52 10 10 612 3.2%
Factor Preventing Further/Worse incident | 244 38 189 316 52 10 10 859 4.5%
Potential Consequence 39 189 316 52 10 10 616 3.2%
Actual Consequence 2 34 12 3 1 52 0.3%
Potential Severity 2073 450 2523 13.2%
Actual Severity 452 316 768 4.0%
Causal | Contributing Factors 10 4 313 44 10 381 2.0%
Root Cause 0 28 8 36 0.2%

SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics, SafeMTS.

While the first structured view of the dataset was created during the pilot phase, it was a
resource-intensive process with potential for efficiency and accuracy gains through the
application of LLMs. SMEs have the expertise to deeply understand event scenarios and the
factors surrounding them, but an LLM has the additional benefit of speed. Applying LLMs in a
targeted way, within a structured process that integrates SME guidance and verification,
represents potential for meaningful improvements to learning value and efficiency.

Table 5 below reflects the introduction of LLMs to process and analyze the dataset. Cells in blue
represent values that were either newly retrieved from narrative fields or normalized. This step
transformed the dataset into a more consistent, comprehensive, and analysis-ready form.
Importantly, there were some changes made to the pilot data key to better sort and categorize
data. The complete list of changes is contained in Appendix E.

As shown in Table 5, through LLM processing, causal factor values were extracted for nearly
every record, resulting in a 98 percentage point increase in completeness. The table also shows
that the completeness of certain fields decreased. This is largely due to changes made to the
data key during the LLM work to improve consistency and model performance, which resulted in
standardizing previously inconsistent values to better reflect the information captured by
reporters. Some values previously contained in “Location on Vessel (High Level)” were moved
to “Location on Vessel (Detailed Level)”, for example.

As shown in the table, values for certain fields were more readily extracted for some companies
than others. For example, no information on the vessel type or system/equipment involved could
be extracted for one company, whereas this information was extracted for the other companies.
This shows that while an LLM can be successful in extracting certain values, there are still areas
where its capabilities may be limited, likely due to the content and richness of narratives
provided, on which the LLM is heavily dependent. This is an area where investments in data
quality improvements may significantly enhance the dataset and analytical outputs.
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Table 5. Dataset Completeness by Company — Post LLM Processing

Data Field c4C @ @3 c ¢ ¢ ¢ cg |owlValues | Percent

Standardized | Change
Vessel Type 12358 5 185 316 197 10 C) 13080 3.8%
Near Miss Classification 8754 175 21 311 292 43 10 8 9614 -33.9%
Location on Vessel (High Level) 1102 703 11 139 36 37 4 1 2033 -51.3%
Location on Vessel (Detailed Lvl) 8089 1752 81 338 280 46 6 10 10602 47.7%
Operations| Activity Ongoing 7847 720 39 454 310 54 10 10 9444 46.3%
System | Equipment Involved 6305 37 187 284 50 10 10 6883 -3.7%
Observing Personnel Type 38 155 314 52 7 7 573 -0.2%
Factor Preventing Further/Worse incident 244 38 186 316 52 10 10 856 0.0%
Potential Consequence 2673 39 436 316 52 10 10 3536 15.2%
Actual Consequence 4 =i 11 3 1 52 0.0%
Potential Severity 450 450 -10.8%
Actual Severity 452 316 768 0.0%
Causal | Contributing Factors 11331 4491 2026 455 315 522 9 10 19159 98.0%
Root Cause 0 3 1 7 11 -0.1%

NOTE: “Percent Change” reflects the percentage point change from the percent of total values submitted or extracted
as shown in Table 4.
SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics, SafeMTS.

2.3.2. Analysis of LLM Populated Data

The analysis presented in this section reflects the LLM-processed dataset, including the values
imputed by the Al model. Importantly, the results, trends, and observations shown are based on
only this limited dataset and should not be interpreted as representative of the entire maritime
industry. Rather, this section is an illustration of analytics that can be developed when a
sufficient sample of data providers fully participate in SafeMTS. These results are exploratory
and intended to guide further validation and analysis rather than support firm conclusions.

Just 1.4% of the originally submitted data contained standardized values in the near-miss
classification field. While up to 84% of records were able to be additionally populated through
SME review during the pilot phase, many of those values needed to be further standardized to
realize maximum learning value. Figure 1 below shows that 9,804 near-miss classification
values were able to be standardized across approximately half the data set, or 9,614 cases
(50.2%), using the LLM processes. For this analysis, an event was able to have more than one
near-miss classification. In future phase, further refinements will be developed to select the best
value.

Of the 9,804 standardized values, “iliness/injury” was the largest category, applied on 29.4% of
events that had a value for near-miss classification, and equipment failure the second most
frequent, at 28.4% of the same subset of events. These results are similar to the pilot phase
data, but as shown in the chart, the categories have been modified slightly based on the newly
analyzed cases. For near-miss classification, there were also nine cases where a value of “not
applicable” was applied by the model. This means that the original value supplied was not
appropriate for near-miss classification but might be able to be evaluated further for populating
other, more applicable data fields.
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Figure 1. Near-Miss Classification Values Extracted/Standardized by LLMs
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SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics, SafeMTS.

Just 0.01% of the originally submitted data contained standardized values in the
operation/activity ongoing field, with up to 580 values able to be populated through SME review
during the pilot phase. Figure 2 below shows that 11,460 operation/activity ongoing values were
standardized across 9,444 events, using the LLM processes. For this analysis, an event can
have more than one operation/activity ongoing. In total, there were 80 unique
operation/activities defined by the model (excluding “not applicable”). Figure 2 includes only
those operations/activities values that were applied to at least 1.0% of the 9,444 records. The
categories most frequently reported are similar to the pilot data set, with the exception of
“Other”, which represents the largest group (19.1%) in this data set, reflecting that many values
were moved into the Other category when changes to the data dictionary were made to further
group some of the operations/activities. As well, this chart shows that “Rounds” makes up a
much larger group than in the pilot data set, and this reflects further refinement of the data key,
as many of these cases were previously categorized as “Inspection.” There were six “not
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applicable” values assigned to records, though not shown on the chart (0.1% of the 9,444
records).

Figure 2. Operation/Activity Ongoing Extracted/Standardized by LLMs
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SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics, SafeMTS.

Of originally submitted data, 0.6% contained standardized values in the potential consequence
field, with up to 3.2% (616 values) able to be populated through SME review during the pilot
phase. Figure 3 below shows that 4,582 potential consequence values were able to be
standardized across 3,536 records (15.2%), using the LLM processes. For this analysis, an
event can have more than one potential consequence. In total, there were 30 unique potential
consequence values that were defined by the model (excluding “not applicable”). Figure 3
includes only the potential consequence values that were applied to at least 1.0% of the 3,536
records. Though not all types of injuries are shown on the chart, similar to the pilot data set, the
combined total of various types of injuries made up the majority of potential consequences
identified, applied to 57.2% of records with a potential consequence value.

Similar to the operation/activity ongoing field, “Other” was labeled as a potential consequence in
many cases (20.9%), reflecting that many values were moved into the “Other” category when
changes to the data dictionary were made to further group potential consequences. “Not
applicable” was applied to 24.6% of records that received a value for potential consequence,
meaning that the many original values submitted in this field were not appropriate as a potential
consequence, and may be used in further research to populate other fields.
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Figure 3. Potential Consequence Extracted/Standardized by LLMs
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SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics, SafeMTS.

Just 0.05% of the originally submitted data contained standardized values for causal factors,
with up to 2.0% that were extracted by SMEs during the pilot phase. Figure 4 below shows that
30,593 high level causal factor values were able to be extracted or standardized across almost
the entire data set (19,159 events), using the LLM processes. An event can have more than one
causal factor; there was an average of 1.2 causal factors identified per event. The figure shows
that Procedural Issue was extracted as a causal factor for 10,093 reported events, followed
closely by Equipment/Material Failure, listed for 9,844 events. The third and fourth most
frequently listed causal factors were related specifically to human error: Mental Lapse applied to
28.2% of reports and Lack of Understanding applied to 17.0% of reports.
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Figure 4. High Level Causal Factors Extracted/Standardized by LLMs
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SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics, SafeMTS.

Four key high-potential (HiPo) event types were initially identified in this analysis as critical to
examine: “Confined Space,” “Falling from Height,” “Man Overboard,” and “Mooring Related.” As
shown in Figure 5, the causal factors for these types of events follow a similar pattern to causal
factors overall, with procedural issue and equipment/material failure being the leading causal
factors for each of these event groups. However, compared to the overall dataset, procedural
issue makes up a much higher percentage of events than equipment/material failure, and both
lack of understanding and mental lapse are associated much more frequently with the three
other groups compared to “Confined Space.”
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Figure 5. High Potential Events Extracted by LLMs
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2.3.3. Identified Gaps

2.3.3.1. Richness of Narratives

Two critical questions to consider when evaluating the sufficiency of data for producing
meaningful outputs include: 1) Is there enough data to learn from it?, and 2) Is the data rich
enough to address the stated business problem? While Al-enabled approaches show strong
potential, their effectiveness remains constrained by data sufficiency and diversity, as current
SafeMTS datasets are sector-heavy and unevenly distributed, underscoring the need for
broader vessel types, operating contexts, and failure modes to improve model robustness,
transferability, and trust. .

While LLMs are extremely useful for extracting values from event descriptions, it is heavily
dependent on the richness of the narratives. To improve data outputs, it may be pertinent to
improve the depth and breadth of event descriptions and other narrative fields if the SafeMTS
program is going to continue to rely almost exclusively on those fields. To this end, outputs from
the pilot phase of the program included draft guidance for near-miss narratives. It stated that a
complete narrative should include what happened, when and where it occurred, who was
involved, and the immediate corrective action taken. Stronger narratives also explain causal
factors, planned long-term corrective actions, potential consequences had the event not been
intercepted, and any relevant human factors.

The pilot report also encouraged use of 14 framing questions, provided in Appendix B—several
informed by Human and Organizational Performance (HOP) principles developed by Todd
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Conklin3—to prompt richer context. Adoption of HOP-style prompts among participants was very
limited in the initial datasets. One approach could be to use the questions as optional aids,
rather than prerequisites. SafeMTS is seeking enhancements that better trace the sequence of
events and illuminate barrier/defense weaknesses—especially human-factor elements that are
increasingly important for preventing similar occurrences.

Given that a substantial proportion of maritime accidents involve human factors, there is
increasing emphasis within the industry on understanding how human performance, decision-
making, communication, workload, fatigue, training, and organizational context influence safety
outcomes. Actively encouraging the capture of human-factors—related details within event
narratives—and designing data-collection processes and interfaces that make this information
easier to provide—would improve data completeness, analytic consistency, and interpretability.
Although some human-factors information may be identified during investigations or follow-up
activities, capturing it at or near the time of the event reduces hindsight bias, improves accuracy,
and enhances the overall reliability and value of the SafeMTS dataset.

One critical question that has not been regularly included in most submitted data (included in
14% of records) is “What might have occurred had the event not been caught or stopped? What
is the worst consequence that could have occurred had one or more of the safety barriers
preventing the event failed or not been in place?” While framing questions 11, 12, 13, and 14
may be too involved to answer quickly at the event capture stage for a seafarer, they may be
appropriate for corporate level follow-up review, that could be submitted to SafeMTS, increasing
the data richness of individual events. To be most effective, such follow-up would need to be
near real-time.

For comparison, the Aviation Safety Reporting System (ASRS) encourages reporters to address
what they believe caused the problem and how to prevent recurrence, with emphasis on (1) the
chain of events—how the problem arose, contributing factors, how it was discovered, and
corrective actions taken—and (2) human-performance considerations—perceptions, judgments,
decisions, factors affecting performance quality, and actions or inactions.

Other approaches that would improve data richness could be considered, such as traditional
accident investigation focuses on what happened, how it happened, and why it happened—a
linear model aimed at accountability and order. By contrast, leading safety scholars
emphasize human-centered learning, storytelling, and social perspectives on risk, fostering

3 The SafeMTS pilot report encouraged the use of 14 framing questions to support event analysis.
Several of these questions are informed by Human and Organizational Performance (HOP) principles,
including: (8) What would you change? Which new controls, defenses, or capacity should be added to
mitigate potential hazards? (11) What happened the way you thought it would happen? (12) What
surprised you? (13) Which hazards did you identify, and which hazards did you miss? and (14) Where did
you have to “make do,” improvise, or adapt? Other questions reflect more traditional, control-oriented
approaches to safety and risk management and are included to support broader analytical and regulatory
needs. Collectively, the HOP questions are intended to explore three parts of an event: (1) The context,
that is, everything that took place before the event happened. (2) The consequence is what happened,
nothing more and nothing less. (3) The retrospective way the organization views the event, post-
consequence, that is, how the organization simplifies and linearizes the event into an understandable and
analyzable problem to be fixed.
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resilience and cultural growth by reframing events beyond blame and attribution (Dekker,
Conklin, 2022).4

2.3.3.2. Data Quality

For data integrity and understanding, it is important that all acronyms be spelled out on first use
or supported by an accompanying key. Inconsistent or undefined acronyms can lead to
misinterpretation by analysts, reviewers, and automated analytic tools, particularly when similar
abbreviations carry different meanings across organizations, vessel types, or operational
contexts. Clear definition of terminology improves shared understanding, supports reliable
cross-event comparisons, and reduces ambiguity in downstream analysis. This practice is
especially important in LLM-supported workflows, where accurate extraction and classification
depend on unambiguous language and consistent terminology.

As well, metadata and information about data collection systems is critical for combining data
from varied sources. Without definitions, context, or understanding of how reports are collected
and stored, data can be misinterpreted, transformed incorrectly, or its use could be delayed or
incomplete. This can be mitigated by establishing a standardized framework for data definitions
and collection protocols to ensure consistency across all inputs.

While LLM models will continue to improve and be used in data extraction, SME evaluation will
remain critical for data quality. However, SME review throughput (raw near-miss reports per
hour) depends heavily on report quality and completeness. For average submissions, one SME
could review and correct all 24 fields in the SafeMTS data key at an average of three reports per
hour. Because many reports lacked key details, SMEs often had to infer context based on their
expertise. With an LLM’s pre-processing step that structures reports and populates missing
context for SME verification, this throughput could reasonably double to about 6 event reports
per hour.

4 This view is consistent with the Safety-Il and Learning from Normal Work literature, which argues that
safety is created through everyday human adaptation and system interactions, and that learning is
enhanced by understanding normal operations, narratives, and social context rather than relying solely on
linear, blame-oriented causal models.
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3. Potential Next Steps

Industry stakeholders expressed that the greatest value outputs from the program would be
near real-time feedback and key risk area analysis, including HiPo events. Using LLMs to
aggregate and analyze SafeMTS data represents an opportunity to realize these outcomes at a
greater speed, producing more useful safety information quickly.

The pieces critical to the data pipeline in addition to using LLMs in accomplishing these outputs
include data quality and timeliness, as well as a scalable process. Refining and expanding
analytical capabilities is one part of the role SafeMTS will take to move in this direction, and
working with participants to collect more timely and higher quality data is another. The potential
next steps that follow are informed by input from SafeMTS participating companies.

3.1. EXPANDING ANALYTICAL CAPABILITIES

1.

Further Extract Missing Data Values: LLMs were trained to automatically identify and
extract critical missing data elements directly from narrative text. This approach enabled
recovery of substantial amounts of information that were not available in discrete data
fields in original data submissions. The extracted data were mapped to corresponding
SafeMTS fields, ensuring compatibility with the established data schema. The LLMs
successfully reconstructed missing fields for many incidents, significantly improving the
overall completeness, consistency, and analytical value of the dataset.

Potential Next Step: Expand validation of the accuracy of LLM-extracted fields for the
extended set of data fields through automated cross-checks with SMEs. Enhance the
model to include low-frequency and lower-criticality fields and to expand extraction
across the extended number of categories.

Additional Accuracy Improvement: Through iterative improvements in data entry
clarification and LLM-enabled analysis, the model was able to extract values for fields
with an accuracy that has risen from less than 40% to more than 80%. This increase
demonstrates the effectiveness of structured feedback loops and advanced analytical
methods.

Potential Next Step: Incorporate data quality scoring as a formalized benchmark, with
goals set at or above 90% record completeness.

Expand Al-Enabled Data Reviews: Al tools were implemented to automate data
classification and initial reviews, reducing manual workload while improving accuracy
and preserving security. This freed SMEs to focus on higher-value insights rather than
repetitive tasks.

Potential Next Step: Expanding these capabilities in the next phase might include
continuous feedback loops with SMEs for progressive accuracy gains.

Expand Analysis of High-Potential (HiPo) Events: LLMs have demonstrated the
ability to detect HiPo events within incident data. This capability adds significant value by
surfacing hidden risks that might otherwise go unnoticed.
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Potential Next Step: Build upon this capability in the next phase, extending testing
across broader datasets, such as NTSB and USCG accident data, and validating against
expert judgment. Several HiPo categories have been suggested by industry members,
including:

Loss of Power

Loss of Main Propulsion

Steering Failure (in closed waters or open waters during a high storm)
Grounding

Collision/Allision

Man Overboard, including inland waterways
Fall from Height

Death or Injury related to:

o Confined Space

Mooring

Dropped object

Lifeboat launch/recovery

Hazardous atmosphere

Large chemical/oil over the side

O O O O O

3.2. WORKING WITH STAKEHOLDERS TO COLLECT MORE TIMELY AND
HIGHER QUALITY DATA

1. Further Refine the Data Taxonomy and Data Dictionary: The data taxonomy and
dictionary were reviewed and refined to support greater clarity and alignment during the LLM
phase. This effort strengthened consistency, reduced ambiguity, and enhanced compatibility
with algorithmic and Al-driven standardization. It is recommended that continued
refinements be coupled with collaborative engagement of companies within Working
Groups, encouraging voluntary alignment with recognized standards, such as ASTM F3256,
while minimizing reporting burdens. SafeMTS can serve as a testing ground for the data
dictionary to be a living document that is repeatedly enhanced with direct input from
participants and stakeholders, to drive meaningful safety improvement efforts.

2. Set Up Industry Working Group: Incorporating participant and stakeholder input is critical
to future development of SafeMTS. One or more working groups may be formed to prioritize
topics based on stakeholders’ needs as well as to inform other areas of SafeMTS program
implementation. Future working group topics include areas of research, including key risk
area analysis, ways to move towards real-time feedback, and a phased data quality
improvement approach. These are detailed further below.

3.3. FUTURE RESEARCH TOPICS

Future research topics, such as the Success Path method, which provides a structured way to
identify and protect the critical barriers that must succeed to keep operations safe, should be
considered (Chen et al., 2022). Another topic to explore might be Learning From Normal Work
(LFNW), which captures how frontline staff actually get the job done, including the adaptations
and constraints they face even when nothing goes wrong (Nazaruk, 2025). In addition,
incorporating positive learning data fields and potentially integrating the model with dashboards
to enable continuous updates and feedback-driven improvement, is an area for exploration.
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Positive learning fields represent the areas and conditions where SafeMTS can proactively learn
from successful operations—not just from deviations or failures. These fields highlight how
people and systems adapt effectively to variability, maintain safety, and ensure consistent
performance. Understanding these patterns strengthens resilience and supports continuous
improvement across the maritime safety ecosystem (Nazaruk, 2025). The identification of
positive learning fields allows SafeMTS to shift from a reactive to a proactive learning posture,
emphasizing how normal operations succeed under real-world pressures. Examples are shown
in Table 6.

Table 6. Positive Learning Fields

Positive Learning Field Description

Examining how personnel maintain safety and throughput despite
high demands.

Understanding safe and effective adjustments when conditions
deviate from plan.

Learning from effective collaboration across departments or
organizations.

Studying operations with natural complexity that still perform
reliably.

Analyzing instances where potential issues were identified and
resolved before escalation.

Capturing grassroots improvements and safe workarounds that
enhance system performance.

SOURCE: Adapted from “Learning from Normal Work” by Marcin Nazaruk (Nazaruk, 2025)

Routine operations under workload pressure

Adaptive responses to changing conditions

Cross-team coordination

Consistently successful high-variability tasks

Error recovery and resilience in action

Innovation and local improvement

By systematically identifying and analyzing these positive learning fields, SafeMTS can codify
adaptive expertise, reinforce what works well, and promote a culture that values learning from
success as much as from failure. This insight supports the broader goal of developing a high
reliability data ecosystem that enhances maritime safety and operational performance.

On the other hand, the Success Path Method takes a unique “positive learning” approach by
identifying what needs to go right for success, rather than only focusing on what can go wrong.
This shifts the perspective from purely reactive risk management to proactive success planning.
In the oil and gas industry, the Success Path evaluation has been applied to well control
barriers, equipment configurations, and operational procedures (Cunningham et al., 2022). A
potential next step includes further research to apply this approach to SafeMTS data, possibly in
integration with LFNW as well as advocated by Shell’s “Fail Safe” approach.

3.3.1. Real-time or Near Real-Time Feedback for Rapid Learning

Across the maritime sector, there is a recognition that paperwork and compliance activities,
while necessary, do not by themselves keep ships moving safely. What matters most in practice
are the day-to-day actions of crews, the quality of leadership, and the decisions made on deck.
Studies highlight that safety performance improves when reporting systems are used not just for
compliance, but as real-time feedback loops that guide training, coaching, and problem-solving
(Kim & Gausdal, 2020). When approached this way, reporting shifts from a routine
administrative burden to a tool that directly strengthens operational reliability and crew safety.

Real-time or near real-time feedback to companies would allow for rapid learning, improved

data quality, and effective corrective actions. The advantages of near-real time analysis include
the ability to request clarifications while events are fresh in memory, a reduction in the “shelf-life
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problem” where the value of data diminishes over time, and greater relevance and applicability
of insights for policy, training, and operational change. Timely feedback is seen as critical for
training and prevention, whereas delays of weeks or months often mean missed opportunities to
act. Being able to quickly clarify missing inputs will be a critical piece in moving towards real-
time feedback. This will require more timely data from companies to SafeMTS. A procedure in
which SafeMTS can communicate back to participants quickly with any questions about the data
could also be considered, subject to available resources.

There are various ways to move towards real-time feedback, such as a data collection
application which might include instant data clarification requests or condition monitoring, each
detailed in this section.

One example of where real-time feedback could be particularly effective in reducing the time
from incident to analysis is the “Equipment/Material Failure” category. While true causes usually
require forensic analysis, with access to numerous sources of data, this category can be more
immediately actionable with two simple follow-up questions, for example, in a shipboard app,
whenever an equipment or component issue is reported:

1. Is there an inspection or maintenance plan for this equipment/component?
2. If yes, was the plan followed?

The answers to these questions provide the immediate next steps that could be taken to
address the issue in near real-time:

¢ If a plan exists and was followed, then review whether the plan needs to be modified.
If a plan exists but was not followed, then communicate with the relevant parties to
determine if there was a misunderstanding, communication error, or other human error
that can be corrected.

¢ If no plan exists, then determine whether one should be created.

These types of immediate question follow-ups in a more automated system are an example of
what a near real-time learning loop could look like. This is difficult to achieve in batch-mode
processing but straightforward in a real-time or near real-time system.

3.3.1.1. Data Collection Mobile Application

To operate a safe shipping company, crews and organizational leaders must manage their time
effectively while dynamically addressing risks and maintaining financial viability. Managers need
timely visibility into emerging vulnerabilities so they can act before weak links become failures.
Achieving this requires a near-miss reporting process that is both efficient for field personnel
and supported by more timely processing and analysis.

A current challenge is that collecting and documenting high-quality near-miss incident
information onboard vessels may demand more time than crews can realistically provide. During
the SafeMTS pilot phase, a data collection mobile application was considered as a potential
next step, along with narrative guidance, a data entry form, and other tools, to facilitate near-
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miss data reporting. Similarly, a Ship Operations Cooperative Program (SOCP?®) survey
confirmed industry support for such a tool, noting its potential to resolve the time-effort conflict.
Such a tool may be more useful to some companies within the maritime industry than others; for
example, it may be more useful to passenger vessel operators or smaller fleet operators than
larger companies with established data collection systems. A potential next step in this area for
SafeMTS is to explore options with participants for facilitating higher quality data collection.

3.3.1.2. Condition Monitoring

Another option to moving closer to real-time feedback is to fuse condition monitoring with
narrative data. Through building a scalable Al model, condition-monitoring streams (e.g.,
temperatures, pressures, vibration, alarms) can be ingested from critical vessel equipment and
be aligned with near-miss/incident narratives. This fusion lets the model detect emerging
degradation patterns, flag plausible precursors, and generate ranked, equipment-specific
recommendations—without prescribing data-collection logistics in this report. The payoff is
actionable signal over noise: earlier warnings, fewer unplanned outages, tighter maintenance
windows, including shifting from time-based maintenance approaches to ones based on live
data feeds.

There have been recent industry moves in this direction of live-capture data and optical/sensor
data, and a shift from paperwork to real work on the vessel. A recent review examines current
predictive maintenance (PdM) practices across maritime systems, emphasizing that no single
approach fits all applications. While deep learning models outperform traditional methods, their
success depends on large, high-quality datasets—currently scarce in the maritime sector. The
study highlights challenges with centralized machine learning, including privacy and scalability
risks, and identifies federated and transfer learning as promising decentralized alternatives. It
also stresses the need for explainable models to meet regulatory and trust requirements.
Overall, PdM offers strong potential to extend vessel lifespans and enhance safety (Kalafatelis
et al., 2025).

Another example is a case study which used data from the U.S. Coast Guard’s Marine
Information for Safety and Law Enforcement (MISLE) system, artificial intelligence, and machine
learning to predict maritime incidents. It demonstrated how near-miss counts and
vessel/waterway type data were used with LLMs to predict serious casualties, achieving high
accuracy (92-99%) (Madsen, 2024). This is a topic that a SafeMTS working group could
discuss, particularly as it applies to participants’ capabilities.

Some example outputs that LLMs could produce as it applies to condition monitoring:

e Degradation scores and anomaly alerts by system/asset (propulsion, pumps,
generators).

e “Precursors watchlist” linking sensor anomalies to similar patterns in past narratives.

e Prioritized, condition-based maintenance actions with confidence levels and expected
risk-reduction.

e Key Performance Indicator lift estimates (e.g., reduction in downtime, near-miss
recurrence, reduction in unnecessary maintenance activities, fuel/consumables).

5 The Ship Operators Cooperative Program (SOCP) is a member-driven organization of industry leaders
to promote and improve the maritime industry through collaboration, facilitation, recommendation, and
innovation.
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Access to condition monitoring data of critical vessel equipment is helpful for gaining accurate
insights into potential weak links that can lead to near-misses or accidents. Such data provides
a real-time and historical view of equipment performance, degradation trends, and anomalies
that may not be visible through incident reports alone. By integrating condition monitoring
information with other data sources, organizations can identify emerging risks earlier, prioritize
maintenance efforts more effectively, and develop proactive interventions that enhance safety
and reliability across operations.

3.3.1.3. Data Clarification Requests

As mentioned above, a system or procedure that could quickly respond to incomplete reports—
prompting the user to provide missing fields—would move SafeMTS closer to near real-time
feedback and learnings. If that feedback loop happened within the same day or shortly
thereafter, data completeness and usefulness would significantly increase.

This might look like a communication procedure established with SafeMTS and participating
companies that is enhanced by Al tools. When used, such tools would output information quickly
to a SME or analyst, who can then communicate with a SafeMTS participating company. The
challenge here lies in the prioritization of communications across parties; near real-time
feedback requires near real-time communication between parties.

In the long-term, this process could be superseded by more advanced automation, such as LLM
capabilities built into a shipboard data collection app, for example. This might look like entering
a near-miss report or narrative in which the tool then immediately prompts the user for missing
or additional details. Such practices are being developed to enhance the efficiency of other
safety reporting systems such as the Aviation Safety Reporting System (ASRS) (see, e.g., Ray
et al., 2023).

Such a combined approach would give SafeMTS both a top-down view of barrier reliability and
a bottom-up view of operational realities. Achieving this level of insight requires a shift away
from narrative-only data. Research suggests that relying on narrative-only descriptions is
insufficient for pinpointing systemic weak links, even when using frictionless technology like
voice-activated apps. By adopting an approach of integrating diverse data sources, the
necessary full forensic detail can be captured to move beyond the limitations of verbal accounts.

3.3.2. Phased Data Quality Improvement Approach

Another potential topic for discussion of a SafeMTS working group would be approaching data
quality improvement through an incremental approach similar to other industries such as
aviation and healthcare. For example, the aviation sector uses a systematic, feedback-driven
model for improving data quality, emphasizing the integration of human expertise, automation,
and learning from operational data. Within this framework, incremental data quality
improvement is achieved through iterative validation, structured feedback loops, and continuous
refinement of both data and analytical tools (Ray et al., 2023).

In healthcare, a best practice emerged from the Agency for Healthcare Research and Quality
(AHRQ) Near-Miss Reporting and Improvement Tracking project by using incremental data-
quality improvement through feedback and simplification. Participating primary care practices
enhanced reporting accuracy and completeness by standardizing a short electronic form,
providing monthly feedback and reminders, promoting anonymous, non-punitive participation,
and linking each near-miss report to follow-up quality-improvement actions. This continuous
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cycle—simplify, report, review, and act—gradually improved the reliability, usefulness, and
learning value of safety data over time (Crane et al, 2017).

In taking advantage of these best practices, the working group may consider a structured
roadmap for improving data quality and recognize that it needs to be prioritized and sustainable,
addressing foundational issues first before optimizing analytical and operational performance. A
sample phased approach including the critical data quality elements is detailed below. The data
quality elements are further covered in Appendix C.

Phase 1 — Foundational Integrity (Critical Priorities)
Objective: Build a trustworthy data foundation by prioritizing completeness, followed by
accuracy, consistency, and format.

o Completeness: Ensure all critical fields (incident type, causal/contributing factors,
incident type, date/time, location, personnel, and operational conditions, personnel role,
operational conditions) are present. Missing or incomplete data can require extensive
SME time and prevents valid analysis. Some key data may exist only in logbooks, PDFs,
or other systems, should be integrated incrementally using Al-assisted extraction tools
within available resources. Complete data enables meaningful analysis and risk
detection.

e Accuracy: Remove typographical and entry errors, duplicates, and misclassifications to
ensure factual precision.

o Consistency: Standardize data structures, taxonomies, and definitions across systems
(e.g., vessel IDs, equipment names, time formats). Recognize that complete data in
special formats (e.g., unstructured PDFs) adds friction. Converting to usable structured
formats should follow once completeness is achieved.

The outcome of these is a reliable baseline dataset that stakeholders can trust for baseline
operational insights and decision-making.

Phase 2 — Analytical Maturity (Enhanced Detail and Timeliness)
Objective: Enrich the dataset to allow deeper, more actionable analysis while ensuring data
reflects real-time operations.
e Granularity: Add more detailed contextual data (e.g., sea state, weather, experience
level, fatigue indicators).
¢ Reliability: Remove ambiguity by defining data elements precisely and ensuring they
align with operational realities.
¢ Timeliness/Freshness: Shorten the lag between data collection and dashboard
availability to enable near real-time anomaly detection and risk response.

The outcome of the additional elements is a dynamic, context-rich dataset supporting advanced
analytics and predictive modeling for proactive risk management.

Phase 3 — Operational Excellence (Sustainability and Usability)
Objective: Institutionalize data governance and usability practices that sustain long-term
improvement and user engagement.
o Relevancy: Continuously verify that every data element serves a defined operational or
learning purpose.
o Availability/Accessibility: Deliver the right data to the right people rapidly through
secure dashboards and APIs, shifting from data retrieval to automatic delivery of
actionable insights.
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Usability: Simplify column names and formats to make datasets intuitive for analysts
and end-users.

Metadata: Treat metadata as a continuous-improvement function. As new ship types,
unmanned vessels, or operational activities emerge, update definitions, structures, and
codes to maintain consistency and usability.

The outcome of these additional data elements is a sustainable data ecosystem where users
can easily find, understand, and trust the data, enabling ongoing performance improvement.

The key benefits of this phased approach include:

Incremental Progress: Focuses on achievable improvements that build upon one
another.

Cross-Functional Engagement: Encourages collaboration between data stewards,
analysts, and operational teams.

High Return on Investment: Early improvements (completeness, accuracy, consistency)
yield immediate gains in analytical reliability.

Long-Term Sustainability: Embeds data governance and literacy as part of the
organization’s culture.

Bias is an additional quality dimension to be considered. For example, established NMAC (near-
midair collision) safety-reporting systems are voluntary and based on subjective reports from
pilots, mechanics, controllers etc. Because of that, the data are subject to reporting bias—i.e.,
not all events are reported, and the subset that is reported may reflect factors like awareness of
the system, willingness to report, perceived severity, and context (Dy and Mott, 2024).
Addressing bias might look like establishing fairness and inclusivity as governance principles.
Auditing datasets for systemic bias or exclusion; ensuring ethical sourcing, anonymization, and
transparency in LLM training data.
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Appendix A. Current Data Key Update

Detailed testing and review necessitated changes to the SafeMTS data key to increase LLM
accuracy for producing meaningful output. For the System/Equipment Involved field, some
values were edited, new ones were added, and then all values were further grouped to add an
additional level/field. Below is a summary list of the new grouped categories, as well as a more
detailed label with all listed changes. Additional modifications are suggested to be added as part
of the phased data enhancement that would be a working group topic/work plan.

Cargo Handling Systems

Deck Machinery

Electrical Systems

Emergency & Safety Equipment
Fuel Systems

Hull & Structure

Living Quarters / Hotel Services
Lubrication Systems
Miscellaneous

Navigation and Communication
Off the ship

Propulsion and Maneuvering Systems
Sea Water Cooling Systems
Ships Stores

Tools/Scientific Equipment

Table 7. New System/Equipment Field Values

(NEW) High Level System/Equipment System/Equipment Involved

Change Detail

Involved (Edits shown in red)

Main Propulsion

Main Reduction Gear
Propeller, Shafting, & Stern Tube EDIT

Steering Systems

Helm
Bow/Stern Thruster NEW
Propulsion and Maneuvering Systems - -

Main Boiler NEW
Dynamic Positioning System NEW
Thrust Bearing NEW
Hydraulic Clutch NEW
Transmission NEW

Intercon Coupler

Fuel Tank

Fuel Systems Fuel Purification

Fuel Service
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(NEW) High Level System/Equipment System/Equipment Involved Change Detail

Involved (Edits shown in red)

Bunkering/Fuel Loading Systems

NEW
(non-cargo related)
Lube Oil
Lube Oil Purification

Lubrication Systems
Thermal Oil
Lube Oil Storage NEW
Sea Water Cooling Systems EDIT
Sea Water Heat Exchangers NEW
Sea Water Cooling Systems

Main & Aux Condensers NEW
Sea Water Treatment/Marine NEW
Growth Prevention Systems
Auxiliary Engine
Aux Steam Systems EDIT
Hydraulic System
Compressed Air
Heating/Ventilation & Air EDIT
Conditioning Systems (HVAC)
Auxiliary Steam Boilers NEW

Utility Systems
Potable/Distilled Water Systems NEW

Sewage Collection & Treatment

Sys NEW

Ballast Systems EDIT

Oily Water Separator (OWS)

Heat Exchangers - Non Seawater | NEW

Bilge Water Systems

Cargo Gear

Cargo Pump

Cargo Tank/Hold

Cargo Piping, Hoses & Valves

Stripping and Transfer
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(NEW) High Level System/Equipment System/Equipment Involved

Involved (Edits shown in red) Change Detail

Vapor Recovery

Cargo Handling Systems
Refrigeration Systems (for cargo) NEW

Fork Lift

Cargo Being Carried

Inert Gas Generator Systems EDIT

Reefer Container

Refrigerated Cargo Holds

Hatch (Cargo Access)

Cranes/Davits/Lifting apparatus

(cargo related) NEW
Galley related equipment NEW
Refrigeration boxes & all NEW

equipment related to ships stores

Clothes Washer/Dryer

Comminuter-Food Grinder

Living Quarters / Hotel Services
Freezer/Chill Box/Storeroom

Garbage

Hospital

Incinerator

Electrical Distribution Systems
Medium/High Voltage (>= 440
VAC)

Electrical Distribution Systems
Low Voltage (< 440 VAC)

Centralized Control Systems (Low

Electrical Systems Voltage)

Switchboards

Electrical/Motor Control Devices

Electrical Devices/Appliances

Electrical Generators

Lighting/Electrical Fixtures

Communication Equipment

Navigation and Communication

Navigation Systems
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(NEW) High Level System/Equipment System/Equipment Involved

Involved (Edits shown in red) Change Detail

Navigation Lights

GMDSS

Documentation

Cargo Stowage System/Stability

Mgt System (Software) EDIT

Test Equipment

Research Equipment

ROV

Tools/Scientific Equipment
Diving Equipment

Power Tools/Tools

Vendor/Customer Equipment

Welding/Hot Work Equipment

Gangway/Accommodation Ladder | EDIT

Ladder/Stairs (everywhere on
ship)

Landing Chair

Door/Hatch (People or Equipment
Access - Not associated with
cargo spaces)

Hull & Structure Railing

Ramp

Stern Ramp

Cranes/Davits/Lifting apparatus
(non-cargo related)

Hold

Mast/Rigging

Void Space

Deck Plating

Stern Ramp

Pilot Ladder

Anchoring Machinery

Deck Machine
i Mooring Equipment

Towing Equipment

Gangway Winch

Lifeboat/Rescue Boat

Other Lifesaving Equipment

Emergency & Safety Equipment
gency y EqUp Fire Fighting Equipment EDIT

PPE
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(NEW) High Level System/Equipment System/Equipment Involved

Involved (Edits shown in red) Change Detalil

Cleaning fluids/materials

Chemicals

Provisions

Ships Stores Spare Parts

Ship Paints

Specialty Chemicals

F/Maintenance NEW

Aids to Navigation

. Dockside
Off the ship

Dock Equipment

Other Vessel

Not reported/Not Identified

Miscellaneous -
Other (Not In the list)
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Appendix B. LLM Technical Details

This section defines the metrics used to evaluate the performance of the LLMs. These
definitions are provided for the general setting where fields can have multiple correct values.

Consider a target SafeMTS field with K acceptable values. Given a dataset with N near-miss
records, matrix Y € {0, 1}V*K denotes the SME labels where Y;; =1ifthe i" record has the jt"
acceptable value labeled. LLM predictions are similary denoted as a matrix ¥ € {0, 1}¥*X where
171-,]- = 1 if the LLM predicted j'* acceptable value for the i*" record. Notice, in SafeMTS fields
which allow multiple values such as “Causal/Contributory Factors”, each row of the matrix ¥ Y
(or ¥) can contain multiple non-zero entries. For the kt" acceptable value, true positive is
defined as TP, = XL, Y;, Y, ,, false negative is defined as FN, = XL, ¥;, (1 - ¥;;), and the
false positive is defined as FP, = (1 = Y; ;)Y k.

Recall of the k" acceptable value is given by:
TP,

k" value' ll = ———
value's reca TP T FN.

Micro-averaged recall is given by summing the nominator and denominator over all possible
values, i.e.,

Z£=1 TPk
YK _ TP, + FNy

micro averaged recall =

Micro-averaged recall equals is essentially equal to the total number of correctly predicted
values divided by the total number of SME labels, hence we refer to it as overall accuracy.

Precision of the k" acceptable value is given by:
TP,

kt" value's precision = —————
p TP + FP,

Micro-averaged precision, analogous to the micro-average recall, can similarly to be computed
as follows:

Yi=1 TPy
YK TP, + FPy,

micro averaged precision =

Notice that micro-averaged precision is equivalent to the total number of correctly predicted
values divided by the total number of predictions. As an alternative metric, we also computed

. . . KVE Y Y
fraction of records with at least one match is computed as Ziz1 Vi Yirik \yhere v denotes the

logical OR operation. When using few-shot learning, the evaluation metrics are computed using
the subset of the records that are not included as few-shot examples.

We used Ollama to serve the models locally and used ollama-python to prompt the models. To
promote more reproducible results, we fixed the random seed to 42 and the temperature to 0.
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Appendix C. Quality Dimensions

Elements critical to consider for high data quality are described below:

1.

2.

10.

Accuracy: Is the data correct, precise, error-free (no typos, no duplicate entries, no
human-generated errors)?

Completeness: Is the data complete (no missing information, no missing or empty
fields, no unexplained acronyms). Incomplete data leads to information gaps and slows
down the value creation process at best, often terminates it with no useful outcome.
Consistency: Is the data represented in the same way in/across the datasets? Are there
any changes in the format and/or structure of the data, or in the names of the attributes
used? Data standardization is a must for creating consistency in data.

Granularity: Data should have enough granularity and detail for the type of task that
needs to be executed.

A. Blue-line data (Work as Imagined) is needed for a proper comparison of the
effects of several operational conditions such as sea state, weather, actual work
hours and rest time etc. on injuries, injury causes, and other parameters of
interest. [Conklin].

B. Several factors which could be correlated with incidents are not present or they
are present but with far too many missing values, such as personnel experience
level, location of event, operational condition, and many more.

Relevancy: Do we know why we are storing this information? What is the purpose? Is it
needed and relevant? There is no point in collecting information that is of no use.
Irrelevant information creates confusion, and is a waste of time, money, and precious
storage space.

A. The company needs to make sure that every field in each record serves an
actual business use case.

B. This business use case needs to be communicated to the people, who actually
touch the data. When people understand a data point’s purpose, they are far
more likely to enter that data correctly and completely.

C. Critical Data Fields for specific reports/analyses need to be known, screened for
accuracy as the data is entered and their accuracy needs be valued. For NLP
analyses, we look at text incident title, business line, vessel name, date of the
incident for time dependent analyses for example. Vessel name inconsistencies
increased the level of effort.

Reliability: Data should not be ambiguous, vague, and should not contain contradictory
information. Trusting data is the only way of building confidence in the information
extracted from the data.

Timeliness/Freshness: How up to date is the data? What is the time lag between data
creation and data publishing? In high-risk environments, the data analysis should be
carried out immediately after the data has been collected. Anomaly detection before it
becomes a threat is of paramount importance in preventing costly outcomes.

What is the lag between when data is collected and when it is presented on dashboards
or available for analyses?

Availability/Accessibility: The right data should be available to the right people in the
organization in a fast and easy way. This could be measured by whether the data can be
accessed from the database(s) via an API.

Usability: How easy is it to work with the data? Data files should have meaningful,
understandable, and relevant column names.
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11. Metadata: Is the data well described? Do you have data describing the data stored?
Metadata is a system catalog — a repository that lists all data files, their relationships, the
attributes used in data files along with their intended use, format, structure, and the data
type adopted. Well-planned and executed work on preparing the metadata resolves
many data problems and saves time spent on searching for relevant data.
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